A mai világban a Természetes számok a társadalom különböző területein nagy jelentőségű és vita tárgya. A munkától a családi életig a Természetes számok jelentős szerepet kapott az emberek életében. A technológia fejlődésével és a trendek változásával a Természetes számok olyan aktuális témává válik, amely senkit sem hagy közömbösen. Ebben a cikkben a Természetes számok-hez kapcsolódó különböző nézőpontokat és megközelítéseket fogjuk megvizsgálni, hogy jobban megértsük annak életünkre és a minket körülvevő világra gyakorolt hatását.
Természetes számoknak nevezik
A sorozat lépésköze 1, tehát a sorozat következő tagját mindig úgy kapjuk, hogy az utolsó taghoz hozzáadunk 1-et. Végtelen sok természetes szám van, mivel bármilyen nagy számhoz is hozzá tudunk adni 1-et, újabb tagot képezve a sorozatban.
A természetes számok halmazát a matematikában egy tipográfiailag kiemelt félkövér vagy „blackboard bold” (kontúros) (Unicode: U+2115) betűvel jelölik (a latin naturalis, azaz 'természetes' szó nyomán). A természetes számok halmazának megszámlálhatóan végtelen számú eleme van.
A természetes számok az összeadásra és a szorzásra kommutatív félgyűrűt alkotnak.
Az ókorban a természetes számokat egyszerűen csak számoknak nevezték (a görögök még az 1-et sem értették közéjük); más nevezetes számosztályokat nem tartottak számon (a racionális számokat pl. számok arányainak tekintették, nem pedig önálló számosztálynak).
A "természetes" elnevezés valószínűleg csak a 19. század végén alakult ki. R. Dedekind, akitől a nevezetes számosztályok (természetes, egész, valós stb.) betűs jelöléseinek egy része származik (ezek szintén ebben az időben alakultak ki), egy 1872-es cikkében a természetes számokról még mint „úgynevezett természetes számokról” beszél (vagyis a kifejezés még nem rögzült teljesen).[5] Grosschmid Lajos magyar matematikus egy 1911-es számelméleti cikkében[6] (egy lábjegyzetben) Dedekindnek tulajdonította a „természetes” kifejezést („Természetes szám alatt - Dedekind nyomán - értek bármely pozitív raczionális egész számot. V. ö. : naturliche Zahl; Dirichlet-Dedekind i.m.[7] XI. Suppl. 436. l.”).
A szakirodalomban eltérések találhatóak abban, hogy a 0 számot a természetes számok közé sorolják-e; másképp szólva, hogy a "természetes szám" elnevezéssel a {0; 1; 2; 3; 4, ....} vagy az egy elemmel szűkebb {1; 2; 3; 4; ...} halmazt illessük-e. Mivel ez nem szorosabb értelemben véve matematikai probléma (nem lehet matematikai tételekből kiszámítani vagy bebizonyítani, természetes szám-e a nulla), hanem pusztán egy elnevezés tartalmáról való döntés, így definíció, megállapodás kérdése, hogy mi tartozik a névvel jelölt csoporthoz. A kérdés mégsem érdektelen, mert, bár a probléma nem matematikai jellegű, eldöntésének már vannak ilyen következményei - a feladatok, állítások, tételek rendszeresen hivatkoznak a természetes számok halmazára, és a feladat megoldhatóságát, a tétel érvényességét vagy bizonyíthatóságát döntheti el a fogalom értelmezése.
Régebben a nulla nem tartozott a természetes számokhoz. A klasszikus, ösztönszerű számfogalom megformálódásakor sem vesszük a számok közé a „semmit”, a nulla Európába csak arab közvetítéssel jutott el a középkorban, a nullával nem lehet osztani. Ennek az értelmezésnek az alátámasztására következzenek idézetek:
A 19. században, halmazelméleti levezetésekben vették először a nullát, mint üres halmazt a természetes számok közé, a definíciót „nem-negatív egész számok”-ra módosítva. Az egyértelműség keresésének szándékával született az a szokás, hogy a nem-negatív egészeket , a pozitív egészeket, tehát a nulla nélküli értelmezést pedig vagy szimbólummal jelölik; az jel önmagában bizonytalanságban hagyja az olvasót. Az jelöléssel is lehet találkozni, de ennek értelmezése nem egységes.
Jellemző, hogy G. Peano, akinek a természetes számok első formális matematikai jellegű elméletének lefektetését tulajdonítják, első ilyen tárgyú cikkeiben még nem sorolta a 0-t a természetes számok közé, későbbi cikkeiben (1898-tól, Formulaire de mathématiques II. c. kiadvány, 2. fej.) azonban már igen. Peano használta és vezette be (ugyanott) a fentebb említett N0 és N1 jeleket is a kétféle számhalmaz megkülönböztetésére.[11]
Minden matematikai természetű témakör akkor tehető tudományos vizsgálódás tárgyává, ha rögzítjük azt az axiomatikus elméletet, melyben a témakör összes állítása formális kijelentés alakjában megfogalmazható. A természetes számok matematikájának axiomatikus elmélete, mint elsőrendű elmélet a Peano-aritmetika, jelben: PA (Giuseppe Peano olasz matematikus tiszteletére).
A PA alapfogalmai a 0 konstansjel (individuumnév), melyet nullának nevezünk, a ' egyváltozós függvényjel (egybemenetű névfunktor), melyet rákövetkezés vagy szukceszor operátornak mondunk (szemléletesen n' az n számot pontosan eggyel követő szám), a + kétváltozós függvényjel, azaz az összeadás és a függvényjel, ami a szorzás.
A PA axiómái a következők (az n, m, k, … jelek olyan változók, melyek természetes számokat szimbolizálnak):
A 0 rákövetkezőjét, 0'-t 1-gyel jelöljük. A (P1) axiómába n helyére 0-t helyettesítve ekkor kapjuk, hogy
A Peano-aritmetika halmazelméleti modelljének nevezzük az olyan (N, 0, ', +, ) rendezett 5-öst, ahol N halmaz, 0 ∈ N, ' :N N függvény, +:N N N, és :N N N pedig művelet, melyekre teljesülnek a PA rendszer axiómái.
A természetes számok halmazelméleti modelljeként kiválóan megfelel a
halmaz. Itt rendre
A természetes számok halmaza végtelen (mégpedig megszámlálhatóan végtelen), számosságát az
(alef null – itt a héber ábécé első betűje) szimbólummal jelöljük. Ha mint rendszámra gondolunk rá, akkor az
jelet használjuk.
A természetes számok halmaza a legkisebb számosságú végtelen halmaz.
Rendezési tulajdonságok: A természetes számok halmazának egy nagyon fontos tulajdonsága, hogy (a szokásos rendezéssel) jólrendezett, azaz akárhány (de legalább egy) természetes számot kiválasztva azok közt van egy legkisebb.
Algebrai tulajdonságok: A természetes számok halmaza az összeadással kommutatív félcsoport, a szorzással szintúgy. Az (N,+) egyműveletes struktúrát a természetes számok additív félcsoportjának, míg az (N, ·) egyműveletes struktúrát a természetes számok multiplikatív félcsoportjának nevezzük.
A természetes számok halmaza zárt (a négy alapművelet közül) az összeadásra és a szorzásra.
Először Richard Dedekind definiálta axiómákkal a természetes számokat 1888-ban implicit módon.[12] Ettől függetlenül Giuseppe Peano 1889-ben egyszerűbb és formálisan precíz axiómarendszert adott meg.[13][14] Ezeket a Peano-axiómákat elterjedten használják. Mivel az eredetihez másodfokú predikátumlogika szükséges, azért használják ennek gyengébb változatát, a Peano-aritmetikát.[15] Más, hasonló axiómarendszerek a Robinson-aritmetika és a primitív rekurzív aritmetika.
A természetes számok definiálhatók a Peano-axiomákkal. Ekkor a természetes számok halmaza az, ami eleget tesz a Peano-axiómáknak. Végtelen sok halmaz van, ami megfelel ezeknek a kritériumoknak, de ezek csak a jelölésben különböznek, a viselkedésük ugyanaz. A matematikában ezt izomorfiának nevezik. Ezt az eredményt Dedekind-féle egyértelműségi tételnek nevezik. Emiatt lehetséges a természetes számokról beszélni.
Neumann Jánosnak sikerült a természetes számokat halmazokkal ábrázolnia, azaz megalkotta a természetes számok halmazelméleti modelljét:
A kiindulási elem a „0“ a üres halmaz. Az „1“ az az egyelemű halmaz, aminek egyetlen eleme a nulla. Ez különbözik az üres halmaztól, mivel annak nulla eleme van.
A rákövetkezési reláció azt a halmazt adja, ami tartalmazza az adott halmaz összes elemét, és a halmazt is. Más szavakkal, az adott halmaz és az azt egyelemű halmazként tartalmazó halmaz uniója. Ez utóbbi diszjunkt az adott halmaztól, így minden halmaz különbözik az előzőtől, tehát a rákövetkező reláció injektív.
Az egyes természetes számok létezését már a gyenge halmazelméleti axiómák biztosítják. A természetes számok vagy halmazának létezéséhez a Zermelo-Fraenkel-axiómarendszerben egy külön axiómának, a végtelenségi axióma biztosítja.
A konstrukció további folytatása, illetve további megelőző számok nélküli számok definiálása a rendszámokat hozza létre.
A természetes számok definiálhatók induktívan, a valós számok közül kiválasztva.[16]
A valós számok egy részhalmaza induktív, ha teljesíti a következőket:
Ekkor az induktív halmazainak metszete.