A mai világban a Kvantálás (fizika) releváns téma, amely emberek millióinak figyelmét ragadta meg szerte a világon. A Kvantálás (fizika) megjelenése óta mindenféle véleményt és vitát generált, így szakértők és rajongók találkozási pontja lett. Az évek során határokon és kultúrákon átívelő jelenséggé vált, és egyre nagyobb érdeklődést váltott ki a tudás különböző területei iránt. Ebben a cikkben alaposan megvizsgáljuk a Kvantálás (fizika) hatását és fontosságát, valamint a jelenlegi kontextusban rejlő következményeit.
Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
A fizikában a kvantálás a klasszikus fizika kvantumelméleti megfogalmazását jelenti. A klasszikus fizika valójában a kvantummechanikából származik, annak határértéke, amikor a kvantummechanikai mennyiségek lehetséges legkisebb értékével a nullához közelítünk. A valóságban azonban leggyakrabban fordított irányban járunk el, azaz a klasszikus megfelelőből jutunk el az alapvetőbb kvantumelméleti megfelelőhöz. Ilyen értelemben beszélünk például a kvantumelektrodinamika kvantálásáról.
A kvantálás felé az első lépést a kvantumelméletben azt jelenti, hogy bizonyos fizikai mennyiségek esetén azok folytonos lehetséges értékei helyett azok diszkrét lehetséges értékeivel számoltunk (például a fekete test teljes energiája). Az illető lehetséges legkisebb érték neve a kvantum. Ez az érték rendszerről rendszerre más, de a Planck-állandó általában alapvető szerepet játszik benne. Ez néhány klasszikusan nem megmagyarázható jelenséget megmagyarázott, mint például a már említett feketetest-sugárzáson kívül a fotoeffektust.
A következő lépést egy alkalmas matematikai apparátus feltárása jelentette, ami ilyen kvantált értékekhez vezet. A hullámmechanika és a hullám-részecske kettősség alkalmasnak bizonyult, mert a klasszikus hullámegyenlet is képes kvantált, azaz folytonos helyett diszkrét megoldásokat produkálni megfelelő határfeltételek esetén (ilyen például a hegedűhúr rezgése annak diszkrét felhangjaival, a véges térfogatba zártság miatt). Az első atommodellek is ilyen lényegében klasszikus úton állították elő a diszkrét energiaspektrumot.
Az igazi lépést a kvantummechanika felé az operátorok bevezetése jelentette, amiknek diszkrét sajátértékspektruma jelentette az első igazi kvantummechanikai kvantálást. A fizikai objektumok lehetséges állapotait a fizikai mennyiségek operátorainak sajátállapotai jelentik.
A második kvantálás a kvantumtérelmélet speciális formalizmusa, ami alkalmassá teszi sokrészecskerendszerek kezelésére, benne részecskék keltésére ill. eltüntetésére. Ez a hullámfüggvény operátorosítását jelenti. A "második kvantálás" neve magának a formalizmusnak a felületes megértéséből ered, mintha az tényleg egy már kvantált elmélet újbóli kvantálása lenne. A formális indoklás szerint az egyszer kvantált elmélet operátorokkal és normális hullámfüggvényekkel dolgozik, míg a másodkvantált elméletben a hullámfüggvények maguk is operátorok, ami végeredményben a részecskeszámot teszi kvantálttá, azaz nem lehetséges például fél elektron. Ilyen értelemben a második kvantálás egy teljes kvantálás.